Pediatric High Grade Glioma

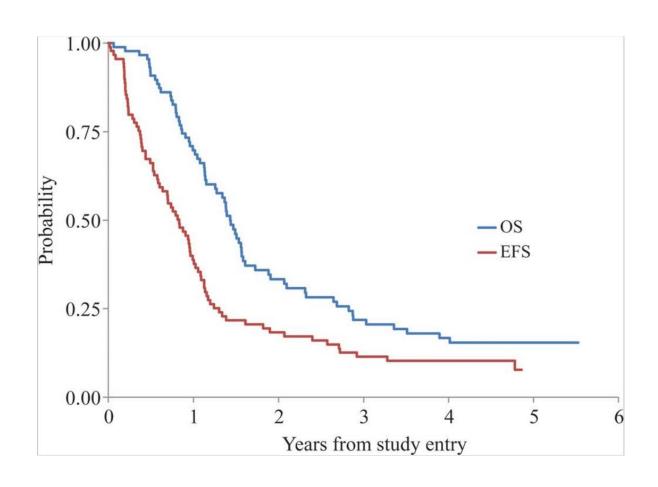
Stephanie M. Perkins, M.D. Washington University/St. Louis Children's Hospital

David B. Mansur, M.D.

Case Western Reserve University/Rainbow Babies and Children's Hospital

Pathologic Classification

WHO Classification


- Reference: Louis DN, Perry A, et al., Acta Neuropathol (2016) 131:803-820
- Glioblastoma
 - Glioblastoma, IDH-wildtype
 - Glioblastoma, IDH-mutant
 - Glioblastoma, NOS
- Anaplastic astrocytoma
 - Anaplastic astrocytoma, IDH-wildtype
 - Anaplastic astrocytoma, IDH-mutant
 - Anaplastic astrocytoma, NOS
- Diffuse midline glioma, H3 K27M-mutant
 - Newly defined entity in the 2016 WHO Classification of tumors
 - includes diffuse intrinsic pontine glioma (DIPG)

Pediatric High Grade Glioma

- Pediatric HGGs are genomically distinct from those of adults
- Recent data has demonstrated presence of somatic histone mutations in some pediatric HGGs
 - H3.3 G34R/V mutated tumors found in the cerebral hemispheres
 - H3.3 K27M tumors are distributed along midline (thalamus, brainstem, cerebellum, spine)
 - H3.1 K27M restricted to the pons
 - K27M mutation present in 85% of DIPG patients
 - Now recognized entity in WHO 2016 classification
- However, H3 mutations are found in less than half of pediatric HGGs
 - 5-10% of tumors harbor BRAF V600E mutation
 - <5% harbor IDH1/2 mutations</p>
 - The remaining tumors (nearly 50%) are a heterogenous group with poorly defined markers

Review of Recent Clinical Trials

- Despite improvement in outcome in adult HGG patients with the advent of temozolomide, there has been little change in outcome for pediatric HGG patients in 40 years
- COG ACNS0126 (Cohen KJ, Neuro Oncol, 2011 13(3):317-23)
 - 107 patients, glioblastoma, anaplastic astrocytoma, gliosarcoma
 - Outcomes compared to prior study CCG-945
 - Temozolomide failed to improve outcome
 - 3-year overall survival (OS) 22 ± 5%

- COG ACNS0423 (Jakacki RI, 2016 Neuro Oncol; 18 (10):1442-50.)
 - Concurrent temozolomide and radiation (XRT), CCNU added to TMZ during maintenance, TMZ concurrently with XRT
 - XRT: 54Gy to resection cavity and any residual tumor + 2cm, boost residual tumor + 1cm to total dose 59.4
 - 108 patients, anaplastic astrocytoma and glioblastoma
 - 3-year OS was 28% as compared to 19% in ACNS0126 (p=0.019)

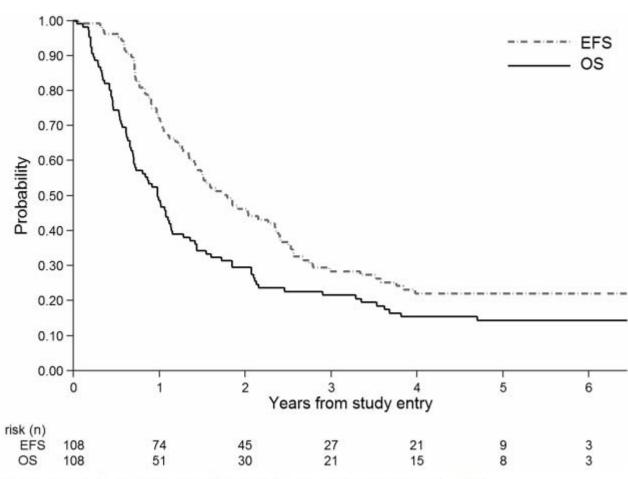
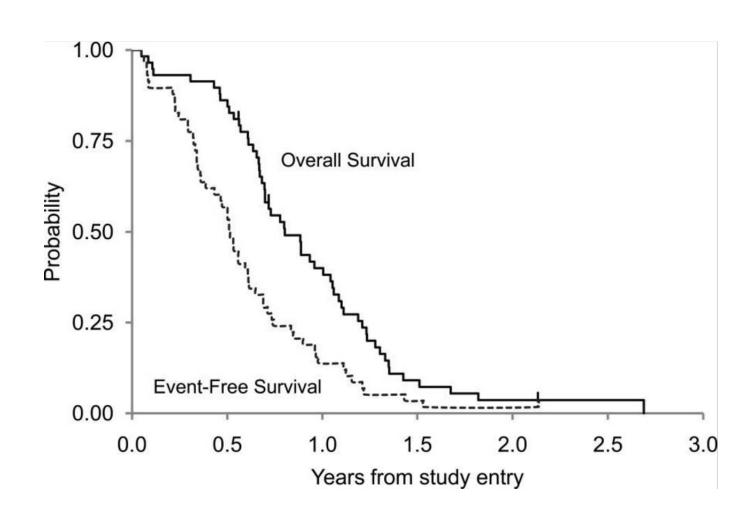


Fig. 1. ACNS0423 EFS (event-free survival) and OS (overall survival) for all participants (n = 108).

- COG ACNS0822, most recent COG trial for HGG
 - Control arm: temozolomide + RT
 - Experimental Arms: bevacizumab + RT or vorinostat + RT
 - Design was a "pick-the-winner" to move forward for a phase III trial
 - Study closed in 2014 as no arm showed any superiority


St. Jude HGG Study

- Phase II Trial of Erlotinib (Qaddoumi I, Front Oncol. 2014)
- 41 patients (21 Glioblastoma, 20 Anaplastic astrocytoma)
 - XRT + Erlotinib followed by adjuvant Erlotinib
 - 2 year PFS 15 ± 7% for anplastic astrocytoma and 19
 ± 8% for glioblastoma
 - No improvement in outcome compared to historical controls

ANCS0126, DIPG

- 63 DIPG patients (Cohen KJ, Neuro Oncol, 2011;13(4):410-6)
 - Temozolomide + XRT (59.4 Gy) followed by adjuvant temozolomide
 - Median time to death was 9.6 months
 - No improvement over previously reported regimens

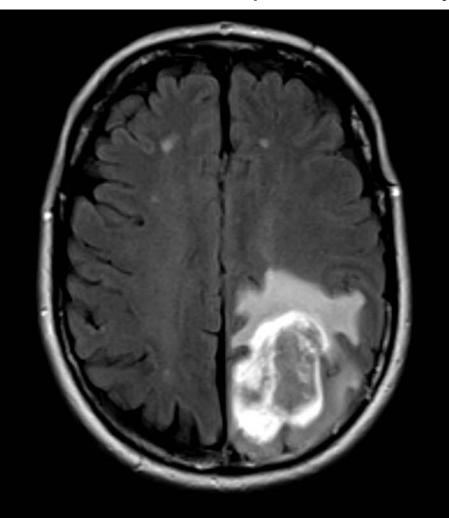
ANCS0126, DIPG

- DIPG patients
- Phase 1/2 study of suberoylanilide hydroxamic acid (SAHA, vorinostat) in combination with XRT followed by adjuvant vorinostat
- Vorinostat is an orally bioavailable histone deacetylase (HDAC) inhibitor
- Study is closed to accrual, final results are pending

Selection of currently available clinical trials (2016)

Clinical Trials

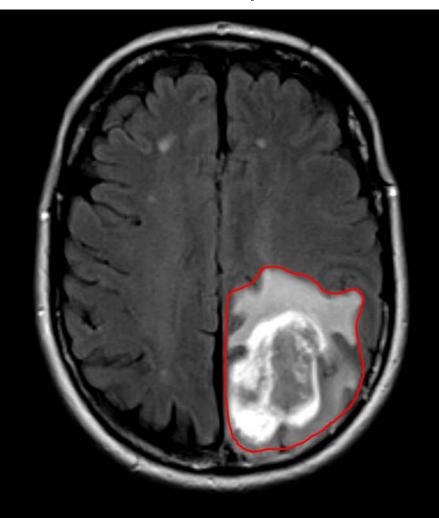
- Pacific Pediatric Neuro-Oncology Consortium (PNOC)
 - H3.3K27M Specific Peptide Vaccine Combined with poly-ICLC for the Treatment of newly diagnosed HLA-A2+ H3.3K27M Positive Diffuse Intrinsic Pontine Glioma (DIPG) as well as other newly diagnosed HLA-A2+ H3.3K27M Positive Gliomas
 - A pilot trial testing the feasibility of using molecular profiling to guide an individualized treatment plan in children and young adults with newly diagnosed DIPG
 - Safety and Phase 0 Study of vemurafenib, an oral inhibitor of BRAFV600E, in Children with Recurrent/Refractory BRAFV600E-mutant gliomas


Clinical Trials

- Children's Oncology Group (COG)
 - A Phase 1 Study of AZD1775 (MK-1775, IND#116459)
 Concurrent with Local Radiation Therapy for the Treatment of Newly Diagnosed Children with Diffuse Intrinsic Pontine Gliomas
- Pediatric Brain Tumor Consortium (PBTC)
 - A Phase I Trial of Panobinostat in Children with Diffuse Intrinsic Pontine Glioma
 - A Safety and Preliminary Efficacy trial of MK-3475
 (pembrolizumab; anti-PD-1) in Children with recurrent,
 progressive or refractory high-grade gliomas (HGG) and DIPGs

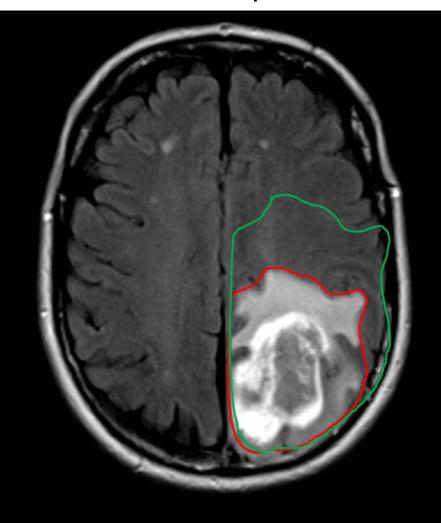
Treatment

Treatment Glioblastoma/Anaplastic Astrocytoma


- Surgery
 - Maximal safe surgical resection
- Chemotherapy
 - Many institutions consider temozolamide + radiation as standard therapy
- Radiation Therapy

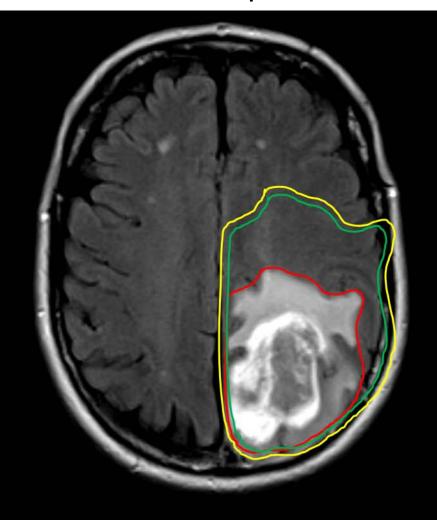
Radiation Therapy

- Fuse MRI for contouring
- GTV1 = Gross Tumor or Resection Cavity and T2 abnormality
- CTV1 = GTV1 + 2.0 cm
- PTV1 = CTV1 + 0.3-0.5 cm
- Dose = 45 54 Gy


FLAIR

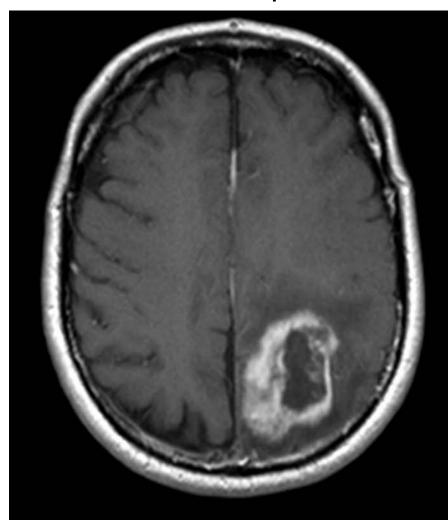
Radiation Therapy

- Fuse MRI for contouring
- GTV1 = Gross Tumor or Resection Cavity and T2 abnormality
- CTV1 = GTV1 + 2.0 cm
- PTV1 = CTV1 + 0.3-0.5 cm
- Dose = 45 54 Gy

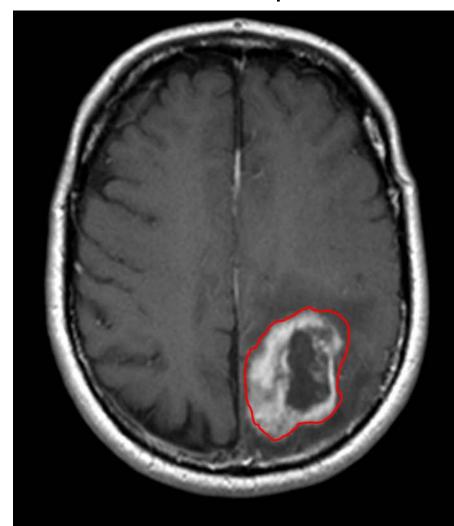

FLAIR

Radiation Therapy

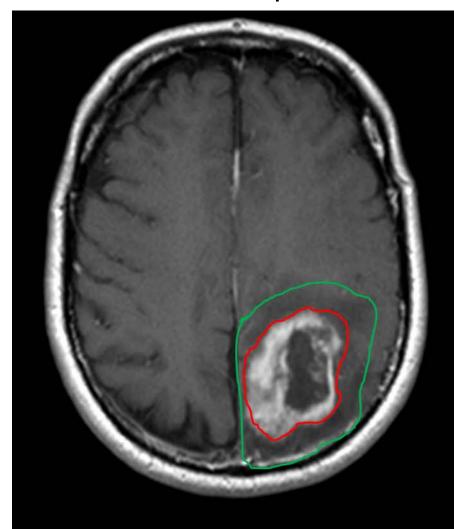
- Fuse MRI for contouring
- GTV1 = Gross Tumor or Resection Cavity and T2 abnormality
- CTV1 = GTV1 + 2.0 cm
- PTV1 = CTV1 + 0.3-0.5 cm
- Dose = 45 54 Gy


FLAIR

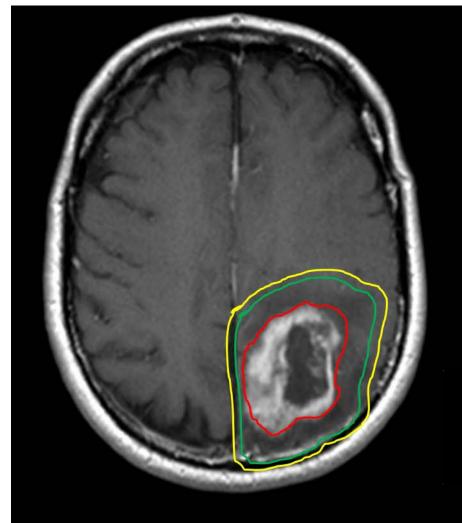
Radiation Therapy


- Fuse MRI for contouring
- GTV1 = Gross Tumor or Resection Cavity and T2 abnormality
- CTV1 = GTV1 + 2.0 cm
- PTV1 = CTV1 + 0.3-0.5 cm
- Dose = 45 54 Gy

FLAIR


- Radiation Therapy
 - Fuse MRI for contouring
 - GTV2 = Gross Tumor or Resection Cavity
 - -CTV2 = GTV2 + 1.0 cm
 - PTV2 = CTV2 + 0.3-0.5 cm
 - Dose = Total Dose 60 Gy

T1 + Contrast


- Radiation Therapy
 - Fuse MRI for contouring
 - GTV2 = Gross Tumor or Resection Cavity
 - CTV2 = GTV2 + 1.0 cm
 - PTV2 = CTV2 + 0.3-0.5 cm
 - Dose = Total Dose 60 Gy

T1 + Contrast

- Radiation Therapy
 - Fuse MRI for contouring
 - GTV2 = Gross Tumor or Resection Cavity
 - CTV2 = GTV2 + 1.0 cm
 - PTV2 = CTV2 + 0.3-0.5 cm
 - Dose = Total Dose 60 Gy

T1 + Contrast

- Radiation Therapy
 - Fuse MRI for contouring
 - GTV2 = Gross Tumor or Resection Cavity
 - CTV2 = GTV2 + 1.0 cm
 - PTV2 = CTV2 + 0.3-0.5 cm
 - Dose = Total Dose 60 Gy

T1 + Contrast

References

- 1. Louis, D.N., et al., *The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.* Acta Neuropathol, 2016. **131**(6): p. 803-20.
- 1. Jones, C., et al., *Pediatric high-grade glioma: biologically and clinically in need of new thinking.*Neuro Oncol, 2016.
- 3. Cohen, K.J., et al., *Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the Children's Oncology Group.* Neuro Oncol, 2011. **13**(4): p. 410-6.
- 4. Cohen, K.J., et al., *Temozolomide in the treatment of high-grade gliomas in children: a report from the Children's Oncology Group.* Neuro Oncol, 2011. **13**(3): p. 317-23.
- Jakacki, R.I., et al., Phase 2 study of concurrent radiotherapy and temozolomide followed by temozolomide and lomustine in the treatment of children with high-grade glioma: a report of the Children's Oncology Group ACNS0423 study. Neuro Oncol, 2016. 18(10): p. 1442-50.
- Qaddoumi, I., et al., Phase II Trial of Erlotinib during and after Radiotherapy in Children with Newly Diagnosed High-Grade Gliomas. Front Oncol, 2014. 4: p. 67.