Radiotherapy for Infant Brain Tumors

Panel 15: The Changing Role of Radiotherapy In Childhood Cancer

Anita Mahajan MD MD Anderson Cancer Center ASTRO, Boston September 27, 2016

Incidence of Primary Brain Tumors in Young Children

CBTRUS 2007-11, USCS 2007-2001

Tumor Histologies

<1 y.o.

1-4 y.o.

Histology	N	% of All Tumors	Median Age	Rate
Gliomas	8,487	52.9%	6.0	2.78
Pilocytic astrocytoma	2,821	17.6%	7.0	0.93
Other low grade glioma	2,296	14.3%	6.0	0.75
High grade glioma	1,784	11.1%	7.0	0.59
⇒ Ependymal tumors	879	5.5%	4.0	0.29
Other glioma	707	4.4%	7.0	0.23
Choroid plexus tumors	362	2.3%	1.0	0.12
Tumors of the pineal region	701	4.4%	6.5	0.23
Neuronal and mixed neuronal-glial tumors	140	0.9%	9.0	0.05
Embryonal tumors	2,413	15.0%	4.0	0.79
→ Medulloblastoma	1,494	9.3%	6.0	0.49
Primitive neuroectodermal tumor	360	2.2%	3.5	0.12
Atypical teratoid/rhabdoid tumor	363	2.3%	1.0	0.12
Other embryonal tumors	196	1.2%	1.0	0.06
Tumors of cranial and spinal nerves	758	4.7%	7.0	0.25
Tumors of meninges	458	2.9%	9.0	0.15
Lymphomas and hematopoietic neoplasms	70	0.4%	6.0	0.02
Germ cell tumors	590	3.7%	9.0	0.19
Tumors of the pituitary	625	3.9%	12.0	0.20
Craniopharyngioma	648	4.0%	8.0	0.21
Other/unclassified tumors	792	4.9%	9.0	0.26
TOTAL ^b	16,044	100.0%	7.0	5.26

5 Y OS by histology & age of diagnosis

Why poorer survival?

- Parents chose to withhold treatment
- Toxicity
 - Neurotoxicity
 - Growth failure
 - Leukoencephalopathy
- Radiotherapy has been associated with significant toxicities and is avoided in young patients (even if better tumor control).

STUDY	Concept	N	yrs	Histologies	Primary Conclusion
Delay CSI- 19	980's				
Baby POG 1 (8633/34)		198	86-90	MB, PNET, E, HGG, BSG, CPC	Can delay RT. Elim RT in CR, GTR's. 30% 5yPFS, 39% 5yOS
HIT-SKK 87	IT MTX	30	87-92	Malig brain tumors	5y OS 50%
Avoid RT- Sa	lvage with CS	SI – 1 9	9 90 's		
Baby POG 2: (9233/34)	CT (std vs dose intense)	330	92-00	MB, PNET, E, HGG, BSG, CPC, ATRT, GCT, CNS Sarc	
CCG 9921:	СТ	299	93-97	MB, PNET, E, HGG, BSG, CPC, ATRT, GCT, CNS Sarc	M+, PR, PD=> RT@36mo. PD =>RT. M0/CR-GTR => no RT. 5y efs 27%, 5y OS 43%
HIT-SKK 92:	CT, IT MTX	43	92-97	MB	5y PFS 58% 5y OS 66%
Headstart:	CT +HDSCRT	62	91-95	MB, PNET, E, HGG, BSG, CPC	19 pt had RT, 17 for PD. 3y efs 25%, 3 y OS 40%
CCG 99703:	CT +HDSCRT	92	98-04	MB, PNET, E, HGG, BSG, CPC	GTR was sig better. 5y efs 44%, 5y Os 64%

MDA Experience

MDA Experience

POG8631/32- Lumping vs Splitting

Figure 3. Overall Survival in Children with Medulloblastomas, Ependymomas, Malignant Gliomas, or Primitive Neuroecto-dermal Tumors.

The differences between groups were significant (P<0.001).

Recent Studies-Separate Histologies

- Medulloblastoma
- Ependymoma
- ATRT

RT Advances over last 40 years

- 3D CRT
- MRI planning, staging, evaluation
- IMRT
- IGRT
- Proton Therapy

Medulloblastoma

Study	n	CT	RT	5-Yr EFS/PFS (±SE)	5-Yr OS (±SE)
Baby POG1 [28]	62	Conventional	Delayed adjuvant CSI	31.8% (±8.3%)	39.7 % (±6.9%)
CCG 9921 [31]	92	Conventional	Delayed adjuvant for residual disease or salvage	32% (±5%)	43% (±5%)
BB SFOP [32]	79	Conventional	Salvage	R0M0, 29%; R1M0, 6%; M+, 13%	R0M0, 73%; R1M0 41%; M+, 13%
HIT-SKK92 [34]	43	Conventional with HD MTX + intraventricular MTX	None	58% (±9%); R0M0, 82% (±9%); R1M0, 50% (±13%); M+, 33% (±14%)	66% (±7%); R0M0 93% (±6%); R1M0 56% (±14%); M+ 38% (±15%)
Head Start I and II [45]	21 M0	Induction CT + $(HDC\&SCR) \times 1$	Salvage	52% (±11%)	70% (±10%)
Head Start II [17]	21 M+	Induction CT with HD MTX + (HDC&SCR) \times 1	>6 yrs old or residual disease	49% ^a	60%ª
P9934 [37]	78 M0	Conventional	Early adjuvant focal	58% (±6%) ^a	$66\% (\pm 6\%)^{a}$

Lafay-Cousin, Strother The Oncologist, 14 433-444, 2009

BABY POG 1

- The single most important predictor of survival was the degree of surgical resection
- 57 GTR 5 yr OS: 62%
- 113 < GTR: 31%
- GTR + M0 (44 patients), the OS was 65%
- Progression tended to occur very early within the first 3-6 months and failures beyond 2 years were uncommon

POG Study 9233/34 - Baby POG 2

Primary objective:

 To prospectively determine the outcome of patients randomized to standard or dose-intensive chemotherapy, with restricted use of RT

Standard Dose: Regimen A

Dose-Intensive: Regimen B

=> RT only for those with M+ disease at dx and those with residual M0 disease at end of chemotherapy

Summary for 9233

- As in Baby POG 1, some infants with MB cured with S & CT
 - M0: 40% survived with no RT, 36% with RT
 - => RT not necessary for all, but not curative for all who need it
- More irradiated children survive (~42% vs ~31%)
- Factors?
 - Large cell/anaplastic variant; M+ disease: bad
 - Need biologic correlative studies which are now happening

Late Effects of Survivors, No RT

- Targeted late effect reporting was voluntary
- Non-RT vs radiated survivors late effect reporting:
 - Having "none" reported more often
 - More hearing loss
 - Fewer & less severe developmental delays and need for special education
 - No endocrine problems vs. GH, thyroid, adrenal deficiencies reported with RT

Infant M0 Medulloblastoma Strategies

- 1. Residual disease is associated with higher rate of progression
- 2. Failures are both local & metastatic
- 3. Possible increased survival with HDSCRT
- 4. Possible increased survival with IT/IV methotrexate

ACNS 0334

- SPNET & HR MB <36 mo randomized to HDSCRT +/- MTX
- 5/14 to 3/16 suspended, 91 accrued
- RT not mandated, only at MD discretion
 - Tumor bed only or CSI
- No results yet

PBTC 026

- 2mo-4yo MB
- Induction => Consolidation (HDSCRT) => RT for M0
 => SAHA/isotretinoin
- M0 Pt get RT, others at MD discretion
- Closed, no results

ACNS 1221

- Phase II M0 desmoplastic MB in <4yo
- Induction chemo (cpm, vcr, carbo, vp16, HD MTX) x 3 cycles

=> CR: end of tx

=> PR: SLO then 2 cycles chemo, then end

- NO RT for this study
- Open 12/13, temporary closed 7/16, 37 of 42 accrued

Infant MB RT Thoughts

- GTR is advantageous
- M0: may do local field only but consider salvage issues of CSI needed later
- M+:
 - CSI, try to delay to >3yo
 - Dose: lower dose if CR is being explored

EPENDYMOMA

BABY POG 1: Ependymoma

48 children with ependymoma

• GTR: 66%

• Subtotal: 25%

• 2 yr Chemo (0-24 mo) 5 yr S: 26%

• 1 yr Chemo (24-36 mo) 5 yr S: 63%

Ependymoma Prognostic Factors

- Multivariate Analysis independent for poor risk
 - WHO grade III, male, age, intracranial location, no surgery
 - With STR: no RT associated with poor outcome HR 1.748,
 P=0.024

COG ACNS 0121

- 1) Evaluation of chemo after STR in an effort to improve resectablity
- 2) Evaluation of observation after microscopic GTR for grade 2 supratentorial ependymoma
- 3) All others RT after GTR or 2nd resection evaluation postchemo
- 4) RT dose 59.4Gy/33 fractions
- 5) Anaplastic ependymomas stratified

Event-Free Survival by Strata

Stratum 1: Supratentorial GTR1

Stratum 2: STR - any grade or site

Stratum 3: <5mm resid or macroscopic GTR, any grade or site

Stratum 4: GTR1 & anaplastic or GTR with infratentorial

ACNS0121 Children's Oncology Group

EFS – Stratum 3+4 by Tumor Grade

ACNS0121 Children's Oncology Group

EFS and OS – Stratum 3+4 by Age

ACNS0121 Children's Oncology Group

Surgery Study Entry **ACNS 0121** Central Pathology Review Rapid Central Pathology Review for Supratentonal Primary Tumor Location approach Extent of Resection GTR1/2/NTR Extent of Resection STR Extent of Resection GTR1 Anaplastic histology Supratentorial(ST) Any histologic grade Classic histology Any histologic grade infratentorial Any location Supratentorial Classic histology: Supratentonal GTR2/NT Randomization nduction Chemotherapy (7weeks) Cycle A VCR, CARBO, CPM Cycle B VCR, CARBO, ETOP, Off Protocol Radiation Therapy Therapy Clinical Target Volume 0.5 cm Response Evaluation and Rapid Central Imaging Maintenance Observation Chemotherapy (ST/Classic) LPD Observation Second Surgery and Rapid Centr Imaging Review (ST/Classic) VCR - Vincristine CARBO - Carboplatin CPM - Cyclophosphamide ETOP - Etoposide ST - Supratentorial Conformal Radiation Therapy SD - Stable Disease DPD - Distant Progressive Disease Clinical Target Volume 0.5 cm PR - Partial Response CR - Complete Response GTR - Gross Total Resection NTR - Near Total Resection STR - Sub Total Resection (r esidual disease) LPD - Local Progressive Disease

COG ACNS 0831

Role of adjuvant chemo after surgery & RT

- Opened 3/2010
- 347 of 400 patient accrual goal as of 9/26/16

ACNS 0121 & 0831

- GTV 1= post op resection margin + gross disease based on pre & post op MRI
- GTV 2= GTV 1 off spinal cord and/or OC
- CTV= GTV + 0.5mm (anatomically adjusted)
- PTV = CTV + 3mm (IGRT) or 5mm

Total Dose 59.4Gy/33 fractions

- 54 Gy to PTV 1
- 5.4 Gy boost to PTV 2

- 500 samples
- Molecular classification by DNA methylation profiling
- 9 subtypes
- Can differentiate b/w grade II/III PF and ST tumors

ATRT

First described in 1987 by Rorke et al

- Previously dx as MB, PNET, CPC
- US incidence 3/10⁶ children = approx 3% of pediatric CNS tumors
- Poor prognosis, most die of disease

Table 6. Comparative features of CNS atypical teratoid/rhabdoid and primitive neuroectodermal tumors of childhood

	Median		
	ATT/RhT	PNET	
Age	17.5 months	3 to 5 years	
Posterior fossa location	65%	82%	
Initial response to therapy	12%	40-60%	

ATRT

ATRT Primary Site

- 50-60% posterior fossa
- 30-40% supratentorial
- 2% spinal
- 2% multifocal

INI 1 protein staining absent in tumor cells

ATRT outcomes - historical

- POG 9923: 36 patients
 - 69% PD by 3-6 mo on therapy
 - 83% PD by 12 mo
 - Med OS 193 d (Strother et al)
 - Most failures in primary site, all died of disease
- CCG 9921: 28 patients
 - EFS 32% at 1 yr, 14% at 2 y (Geyer et al)
 - Failure: local 45%, local & met 29%

ATRT - Surgery

- Surgery for diagnosis
- Registry data: degree of surgery may affect survival
 - 20 GTR EFS 12.5 mo
 - 22 STR EFS 9.25 mo
 - 10/14 long term survivors had GTR
 - ? Role of second look surgery

Chemotherapy – IRS III

- RT, IT MTX, Ara C, hydrocortisone, multi-agent chemo
 - All 3 pt responded, 1/3 had prolonged survival
- CHOP: similar approach
 - 2 Y EFS 33% (Janss)
- Boston:
 - IRS III in 2 pt with relapsed ATRT, alive at 30 mo (Kieran)

High dose chemo with SCT

- ATRT registry 13 pt
 - 4/13 pt alive at last evaluation: 2/4 had RT
- HS II: HDSCR + MTX, no RT:
 - 3/6 pt NED at 12, 34, 46 mo from dx
 - 1 pt salvaged w RT and chemo
- HS I: No MTX: 6/6 ATRT pt died

ATRT-Boston experience

- 2004-06: 20 pt
 - med age 26 mo
 - 14 M0, 5 M3
 - 15 pt RT: 11 CRT, 4 CSI
- 2y PFS & OS: 53% & 70%.
- Local RT for M0

Chi et al, JCO, 27 385-389, 2008

ATRT- Radiotherapy

- ATRT registry: 42 pt
 - 13 pt received RT as part of primary therapy
 - 9 RT to primary site
 - 4 RT to CSI + primary site
 - Median OS 48 mo vs. 16.7 mo for all pt on registry
 - Of the 14 long term survivors on registry, 7 had RT
- St Judes:
 - 22 pt <3 y at dx: chemo alone=> 3 y EFS 11%
 - 9 pt >3 y at dx: CSI +chemo => 3 y EFS 58%

ATRT SJMB 03 - 9/04-11/09

- 17 pts, mean age 5.7 y (3.1-12.1)
 - ST 8, PF 7, spinal cord 2
 - -9AR, 8HR (M+6)
 - 10/17 GTR or NTR
- Treatment regimen
 - 23.4 Gy or 36-39.6 Gy CSI + boost to 55.8Gy
 - 4 cycles cyclo based intense chemo

- Results at median f/u 12 mo (3-64mo):
 - 16 pt received median of 4 cycles of chemo
 - 10 pt alive NED, 7 pt DOD
 - 5Y EFS 54%, 5Y OS 52%
 - 5Y OS AR vs HR: 87.5 vs 15%

SNO 2010 PC-03 abstract: Gajjar et al

ATRT – Overall Data Summary

- Retrospective studies: median OS +/-1 yr
- Data suggest:
 - Std & intensive chemo: good response, but high recurrence
 - Early RT may be associated with survival
 - CT with PBSCT may have higher control rates
 - MTX (HSII and IRS III) may be useful

^{*}Craniospinal irradiation is recommended but not mandated for patients with disseminated disease at the time of enrollment.

 M_0 = no evidence of metastatic disease at the time of enrollment.

 $M_{\scriptscriptstyle +}$ = evidence of metastatic disease at the time of enrollment.

ACNS 0333 continued

Age @ RT	M Stage	Primar y	Volume	CSI	Primar y
6-36 mo	M0	IT	Focal	0	50.4
>36 mo	MO	IT/ST	Focal	0	54
<36 mo	M+	IT/ST	Focal+CSI	23.4	27
>36 mo	M+	IT/ST	Focal+CSI	36	18

- Opened 12/08 closed 2/14
- Accrued 70 patients

Failure pattern will be studied to determine need for CSI

ACNS 0333

- So far 24 mo:
 - All: EFS 43% OS 52%
 - <36 mo: EFS 39% OS 48% (p<0.025)
- \Rightarrow ACNS 0333 better for <36 mo pt
- ⇒ Order of therapy not important
- ⇒ Further intensification not possible
- ⇒ Molecular stratification may be helpful

ATRT

- ATRT is a devastating disease
- Aggressive multimodality therapy appears to be necessary even for very young children
- Early radiotherapy advocated for all children with non-disseminated disease
- Biology of ATRT will need more study

Late Effects with Advanced RT Techniques

- Study for St. Judes suggests very young children with PF tumors and local RT do well with respect to cognitive function
- MDA ATRT study did not indicate significant late effects, but more follow up needed.

Proton Therapy – just a word!

MDA Proton Therapy in <4yo Pt's

Decade	Total	N malig	% Malig	N RT (X/P)	% RT
<1970	18	17	0.94	4	0.78
1970's	28	27	0.96	13	0.75
1980's	61	58	0.95	15	0.31
1990's	86	81	0.94	5	0.15
2000's	133	125	0.94	74 (39/35)	0.54
2010's	170	165	0.97	139 (37/102)	0.79

US Pediatric PRT Trends 2010-13

Courtesy of PPF

Summary

- Management of malignant infant brain tumors requires multidisciplinary approach
- Radiotherapy has made a "come back" and requires consideration of all normal tissues, MRI based planning, highly conformal dosimetry to CTV
- Continue accrual on protocols to improve outcomes further
- Follow patients to study incidence of late effects.