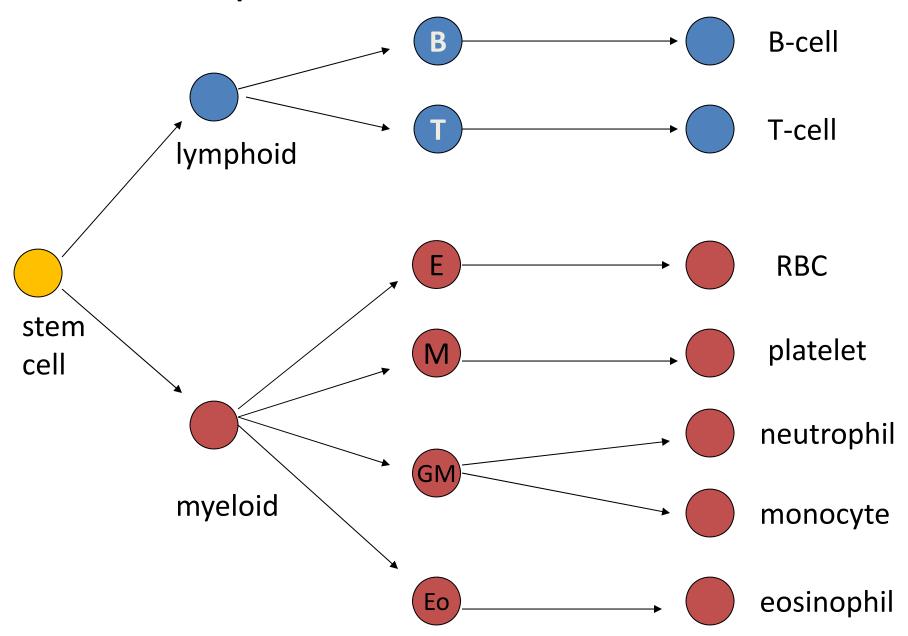
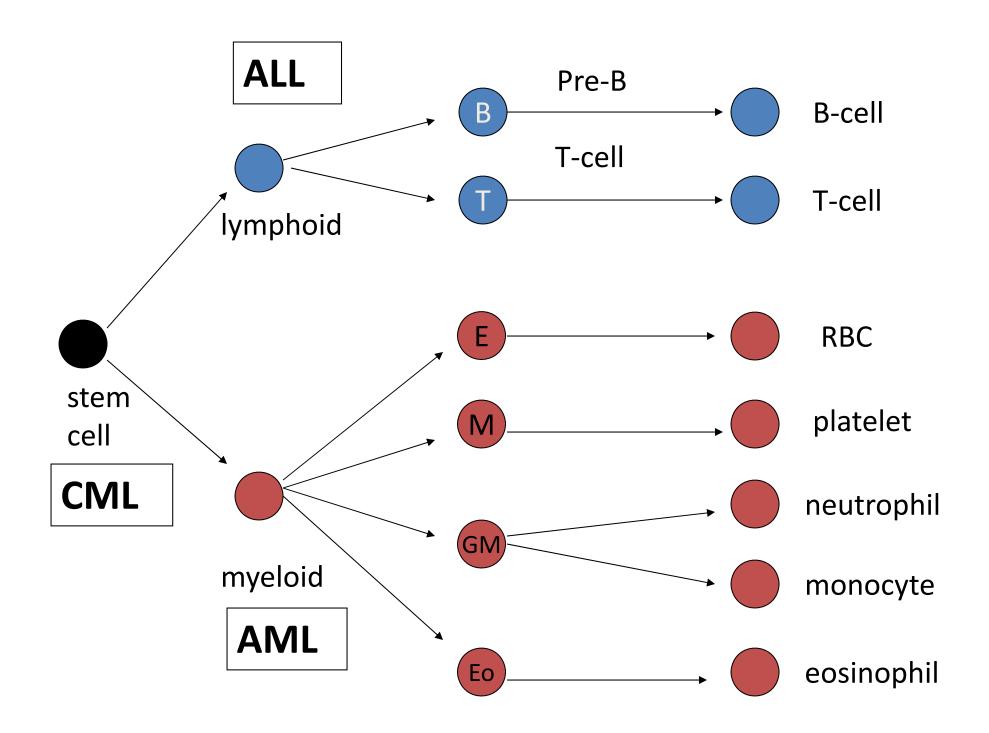
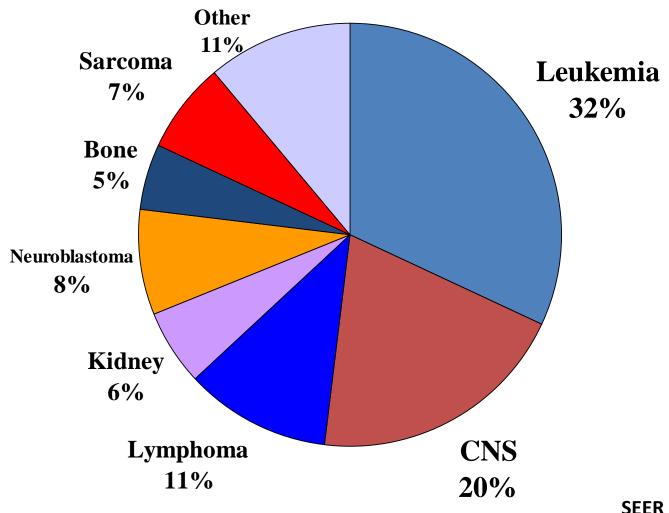
Childhood Acute Lymphoblastic Leukemia

Karen Marcus MD



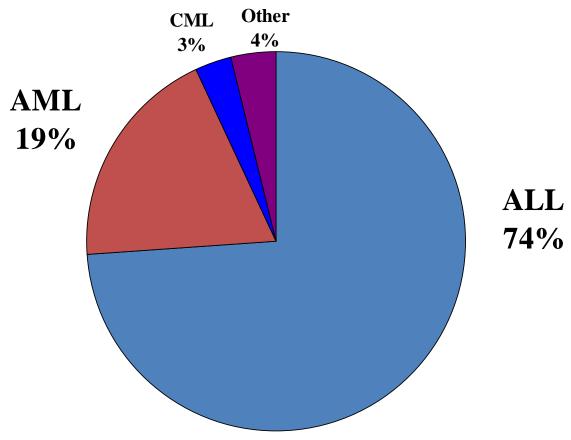

Leukemia: Definition

- Clonal malignancy (cancer) of blood precursor cells
- Leukemia cell: blast
- Acute leukemia: >25% malignant blast cells in bone marrow
 - Usually "packed": > 80-90% blasts



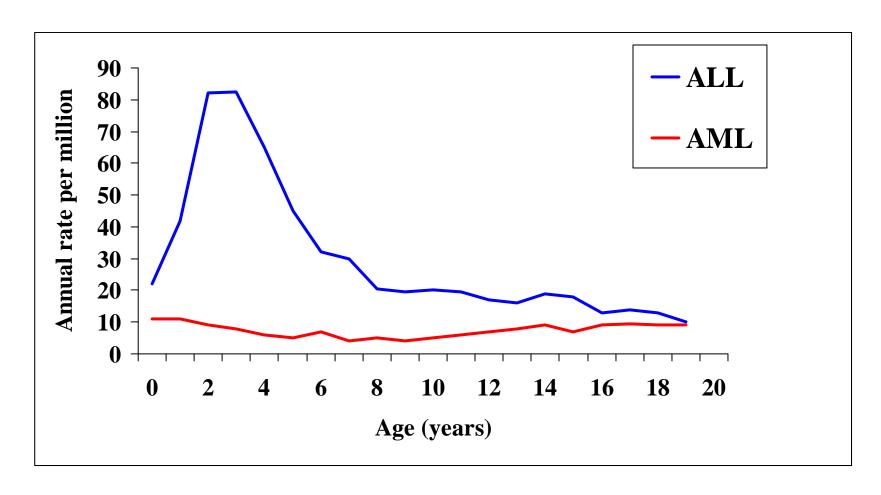
Normal Hematopoiesis

Childhood Cancer in U.S.



Childhood Leukemia in U.S. (Age < 20 years)

SEER data, 1975-95



Leukemia: Epidemiology

- ~3250 new cases in US/year
 - ~2500 new cases of ALL/year
- Annual incidence 39.5/million (age <20 yrs)

Leukemia: Age-Specific Incidence

Childhood ALL: Etiology

- No known cause for vast majority of cases
- Down Syndrome
 - ~10-20 x increased risk of developing childhood leukemia
 - 50-75% of leukemia cases are ALL
 - Cumulative incidence of leukemia
 - ~2% by age 5 years
 - ~3% by age 30 years
 - Almost always have B-ALL (not T-ALL)
 - Higher risk of treatment-related complications (infections, mucositis)
 - Overall ALL outcome similar to non-Down Syndrome patients

Signs and Symptoms

- Replaced Marrow
 - Anemia: Pallor, decreased energy
 - Thrombocytopenia: petechiae, bruising, bleeding (rare)
 - Neutropenia: severe infection
 - Bone pain: limp, back pain

Signs and Symptoms

- Extramedullary Disease
 - Organomegaly: hepatosplenomegaly
 - Lymphadeonpathy
 - CNS disease: h/a, meningismus, cranial nerve palsies
 - Skin: Leukemia cutis (AML, infants)
 - Testicular masses (ALL)
 - Ocular: retina, cornea
- Fever
- Exceedingly rare to pick up leukemia as incidental finding on routine CBC in asymptomatic patient

CBC at Presentation

Leukocyte count (/mm³)	<u>%</u>
< 10,000	53
10-49,000	30
>50,000	17

Hemoglobin (g/dL)

<11.0	88

Platelets (/mm³)

<20,000	28
20,000-99,000	47
>100.000	25

Differential Diagnosis

- Rheumatologic: JRA
- Infections: EBV
- Non-malignant Heme: aplastic anemia, ITP, leukemoid reaction
- Other malignancies: Neuroblastoma,
 Lymphoma

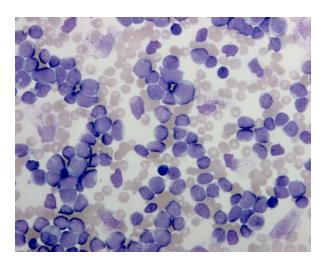
- Stabilize Patient
- Assess for Leukemia-related "emergencies"

1. Assess for Possible Infection

If febrile:

- Blood culture, regardless of age
- Begin broad spectrum antibiotics, regardless of ANC
 - Cefepime (with 48-hour vanco rule-out)

2. Assess for Need for Transfusions


 Transfuse PRBC's, platelets (leukodepleted, CMV-negative, irradiated)

- 3. Assess for signs/sx of Hyperleukocytosis:
 - WBC >100, 000/mm³
 - Signs/Symptoms of sludging in CNS, Lung
 - IV fluid, anti-leukemic therapy
 - Pheresis (AML more often than ALL)

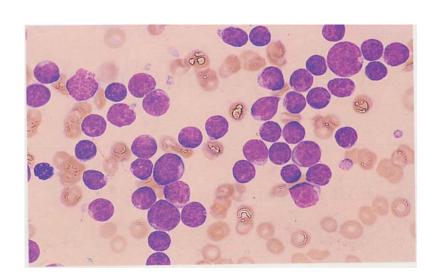
- 4. Assess for possible DIC:
 - Risk for life-threatening bleeding
 - -AML > ALL
 - For ALL patients: T-ALL > B-ALL
 - -Check PT/PTT/fibrinogen in all patients
 - -Transfuse FFP, cryoprecipitate as needed

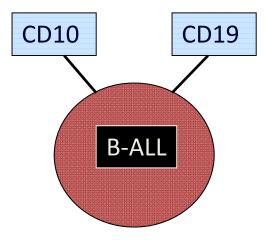
5. <u>Assess and Treat Acute Tumor Lysis</u> <u>Syndrome</u>

- High uric acid, high potassium, high phosphate (low calcium)
- Can result in renal failure (uric acid precipitates)
- Should check electrolyes, BUN/Cr, uric acid in <u>all</u> patients
 - G6PD in case rasuburicase needs to be used
- Prevention/treatment:
 - IV hydration (no K in IVF)
 - Bicarbonate no longer routinely used
 - Allopurinol (Rasburicase)

4. Assess for Anterior mediastinal mass:

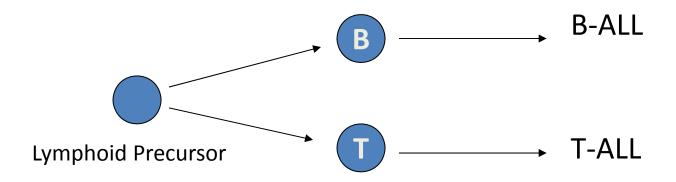
- T-cell ALL (almost exclusively)
- Range of symptoms may be present
- Obtain CXR in <u>all</u> patients at initial diagnosis
- Consider CXR in new asthmatic prior to treating with steroids


Summary of Initial Management


- CBC with differential
- DIC screen
- Clot to blood bank
- "Tumor Lysis Labs": Lytes, BUN/Cr, Ca, Mg, Phos, Uric Acid
 - G6PD (in case rasburicase is needed)
- Chest x-ray

Diagnostic Evaluation

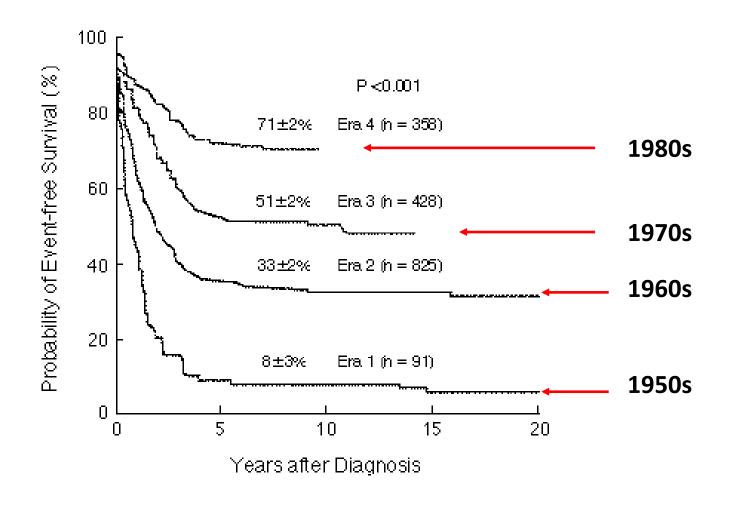
- Bone Marrow Aspirate/Biopsy
 - Morphology
 - Flow cytometry
 - Cytogenetics: Karyotype, FISH, PCR



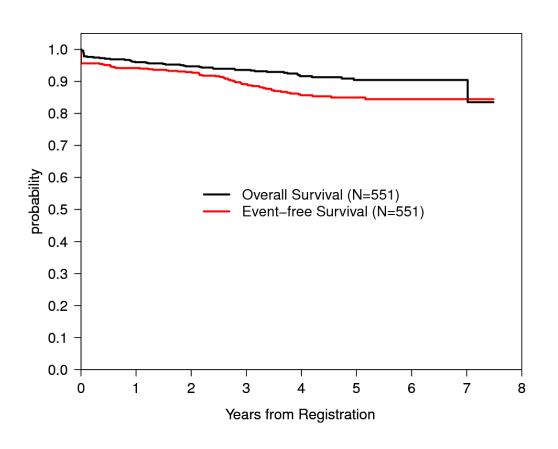
Spinal Fluid (with IT therapy—<u>after</u> diagnosis is made)

ALL: Immunophenotype

- B-ALL: 85% of patients
- T-ALL: 15% of cases
 - Higher median age at diagnosis (adolescents)
 - Higher presenting leukocyte counts
 - Anterior mediastinal mass
 - Male predominance



Childhood ALL: Treatment and Outcome



Childhood ALL: Dramatic Improvement in EFS

Childhood ALL Outcome: 2014

CR rate: >95%

4 yr EFS: 86% [95% CI 82-88%]

4-yr OS: 92% [95% CI, 89-94%]

Median f/u: 4.5 years

Why Improvement in Outcome?

- Not a result of new drugs
 - Most of the agents used today were available in 1960s-1970s
- Better supportive care
 - Transfusions
 - Antibiotics
 - Acute tumor lysis syndome
- Recognition of CNS as sanctuary site
- Risk-adapted therapy

Risk-Adapted Therapy

- Intensity of therapy stratified based on patient's risk of relapse
- Patients assigned to "risk group" based on presenting features that have been previously correlated with outcome
 - "High risk" features: more intensive therapy
 - "Low risk" features: less intensive therapy
- Goal of Risk-Adapted Therapy: Treat away the higher risk of relapse

Risk-Adapted Therapy

- Prognostic Factors used to risk-classify patients with ALL
 - Age
 - Presenting WBC
 - Immunophenotype: B-ALL vs. T-cell
 - Presence/Absence CNS Leukemia
 - Leukemia Cytogenetics
 - Early Response to Initial Chemotherapy

ALL: Prognostic Factors

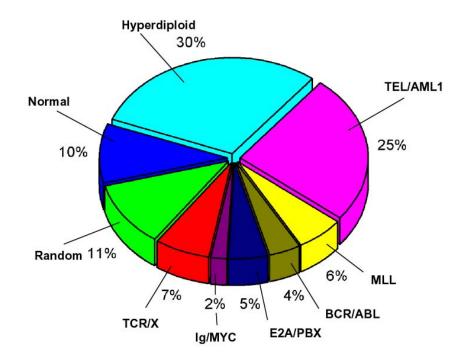
Age and Presenting WBC:
Recognized for decades as strong predictors of outcome

Favorable

Age 1- 10 years

• WBC $< 50,000/\text{mm}^3$

Less Favorable


Age < 12 months, or> 10 years

• WBC > $50,000/\text{mm}^3$

Childhood ALL: Cytogenetics

- Multiple recurrent chromosomal abnormalities
 - Ploidy: Number of chromosomes
 - Translocations: Rearrangements of genes

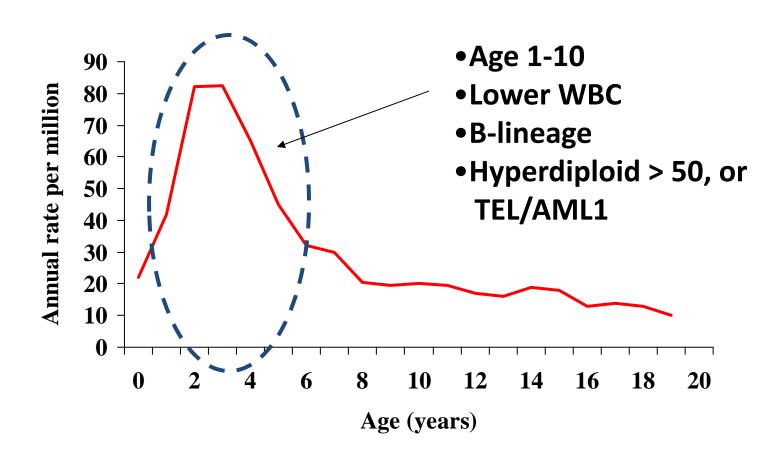
Cytogenetic Abnormalities: Prognostic Signficance

Favorable

- Hyperdiploidy
 - 51-65 chromosomes
- TEL/AML1 [(t12;21)]

~50% of patients

Unfavorable

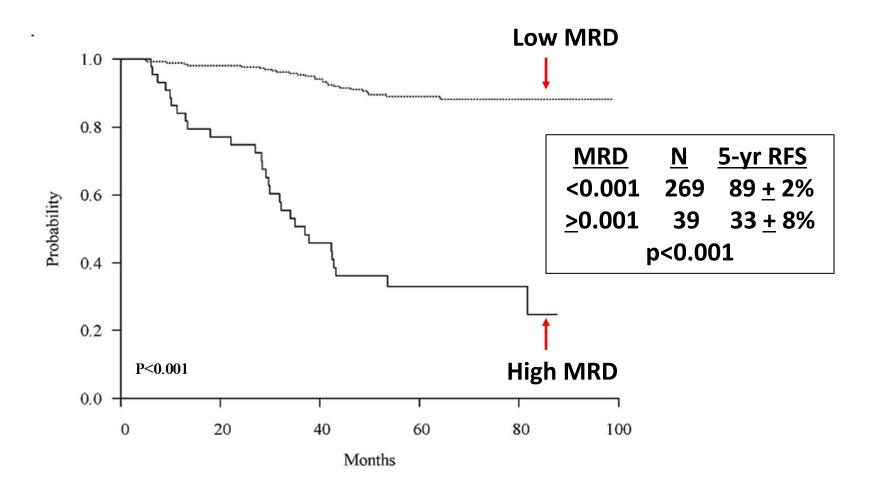

- Hypodiploidy (<45)
- MLL translocations
 - chromosome 11
- Philadelphia chromosome [t(9;22)]

~10% of patients

"Favorable" Risk Group

Early Response To Therapy

- Response after a few weeks of therapy strongly correlated with long-term outcome
- End of Induction Minimal Residual Disease (MRD)



What is MRD?

- At end of 1st month of treatment, >95% of children are in complete remission
 - Recovered blood counts
 - Marrow normal in appearance without visible blasts
- However, all patients have submicroscopic ("invisible") disease
- MRD Assays: Quantification of very low levels of leukemia (1 in 1000-100,000 cells)
- Techniques:
 - Flow cytometry
 - PCR: leukemia-specific IgH and/or TCR gene rearrangements

Event-Free Survival Based on Day 30 MRD

Risk Group Stratification

- Standard Risk: All of the following
 - Age 1-10 years
 - WBC < 50,000/mm3
 - B-cell phenotype
 - No or very few leukemia cells in spinal fluid
 - No VHR features

- <u>High Risk</u>: <u>Any</u> of the following
 - Age ≥ 10 years
 - WBC > 50,000/mm3
 - T-cell phenotype
 - Spinal fluid with ≥ 5 WBC/hpf
 and detectable lymphoblasts

And: No VHR features

Very High Risk: Any of the following

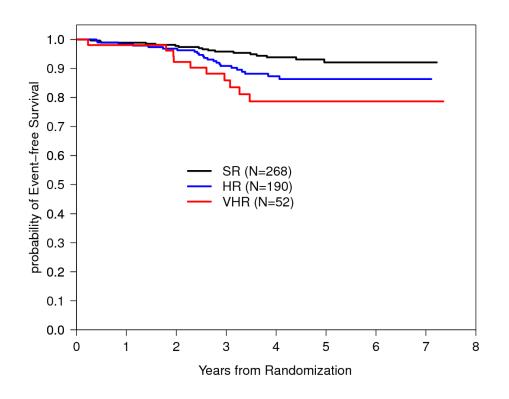
- High MRD at end of induction
- Adverse cytogenetics
 - MLL gene rearrangement
 - Hypodiploidy

Risk Group Classification:

	Initial Risk Group N=794	Final Risk Group N=751
	11-134	11-731
SR	462 (58%)	407 (54%)
HR	332 (42%)	260 (35%)
VHR	0	66 (9%)
Ph+	0	18 (2%)

Childhood ALL: Treatment

- 2-3 years of chemotherapy
 - Remission Induction: 1 month
 - Multiagent, inpatient
 - Goal: Achieve CR (no visible leukemia)—96% of patients
 - Intensification/Consolidation: 6-9 months
 - Typically outpatient
 - Intensity of therapy varies by Risk Group
 - Continuation/Maintenance
 - Low-intensity, outpatient
 - CNS-directed therapy
 - Intrathecal chemotherapy
 - Cranial radiation for subset (10-20%)
- Stem cell transplant: Only for relapsed/refractory disease


CNS-Directed Therapy

- Cranial irradiation + IT therapy had been standard for all children with ALL
- Intensification of systemic and intra-thecal chemotherapy effective for standard risk and most high risk patients
- Now protocol-specific use of cranial RT
- Dose for prophylactic RT: 12 Gy in 8 fractions
- Dose for CNS 3 disease : 18 Gy in 10 fx

Outcome by Risk Group

4-yr EFS	
SR	94% [90-96%]
HR	87% [81-92%]
VHR	79% [64-88%]

Toxicities of Therapy

Acute

- Infections
- Asparaginase-related
 - Pancreatitis
 - Clots
- Fractures
- Seizures

Long-term

- Cardiac
- Neurocognitive
- Short stature/obesity
- Cataracts
- Bone (AVN)
- Second Malignancies

Primary Care for the Child with ALL

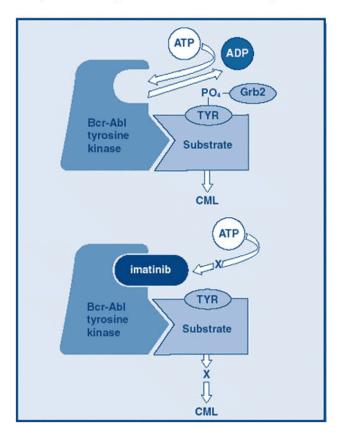
On Therapy

- Immediate evaluation for any fever
 - Blood culture, antibiotics
 - Admission to hospital if neutropenic or ill-appearing
- Bactrim for PCP prophylaxis (until 6 months off-therapy)
- No vaccines to patient, <u>except</u> annual flu shot (no intranasal!)
 - No restriction on vaccines to siblings (except no intranasal flu vaccine)

Primary Care for the Child with ALL

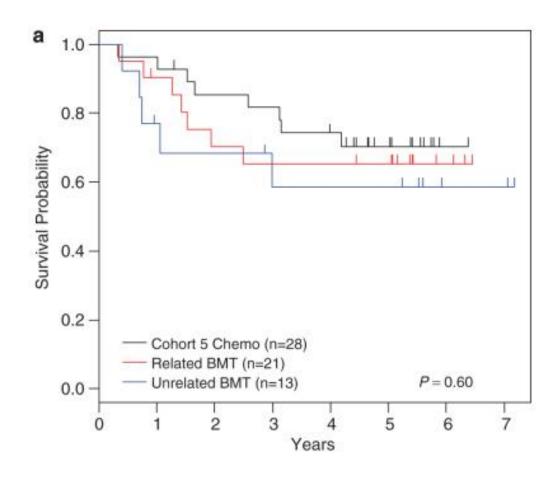
Off-Therapy

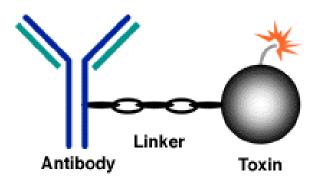
- Routine fever evaluation (once central line removed)
- May resume all vaccines after 6 months
 - No need to repeat vaccines given prior to diagnosis
- Consider possible late effects
 - Growth
 - School performance
 - Cataracts
 - Cardiac (LV dysfunction)
 - Second tumors (if radiation)


Future Directions

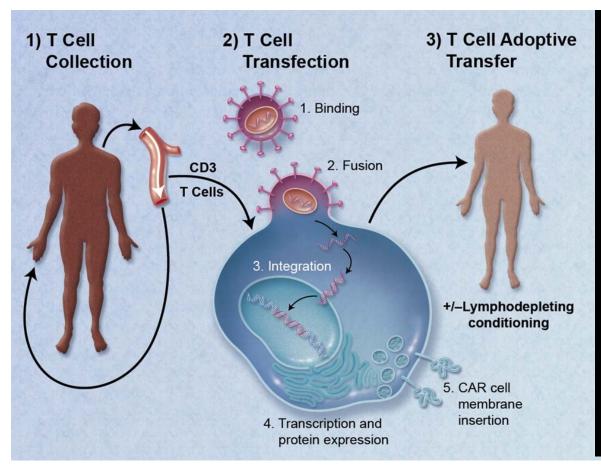
- Identify New Prognostic Factors
 - Identification of biologically distinctive subsets
 - eg, Ph-like ALL (~15% of patients)
- Develop New Therapies
 - Targeted Therapy (based on underlying genetics)
 - Immunotherapy
- Minimize Toxicity

Targeted Therapy: TKI


Figure 2. Inhibition of Bcr-Abl by imatinib. The aberrant phosphorylation and activation of downstream signal transduction by the Bcr-Abl fusion protein is inhibited by the competitive binding of imatinib in the ATP-binding site.⁷


- Ph+ ALL: ~5% of childhood ALL
 - More common in adolescents/adults
- t(9;22) forms bcr-abl fusion kinase
- TKI: tyrosine kinase inhibitor
 - Targets bcr-abl kinase
 - Prolonged responses in CML
 - Transient responses in relapsed, Ph + ALL (weeks-months)

TKI + Chemo Improves Cure Rates for Childhood Ph+ ALL


Toxin-Conjugated Monoclonal Antibodies

- Leukemia-specific antibody linked to toxin
- "Targeted" cell kill:
 - Antibody binds to leukemia
 - Toxin internalized into cell
 - Most normal cells are spared
- Several trials open of B-cell ALL-specific antibodies linked to
 - Pseudomonal exotoxin
 - Calicheamicin
 - Monomethyl auristatin (anti-mitotic agent)

CAR T-cells

CAR T-cells

- •T-cells harvested from patient
- Harvested cells transfected with genes that allow the T-cells to become specific for tumor (eg, targeting CD19 in B-ALL)
- Transfected cells infused back to patient
- Trials underway in B-ALL (adult and pediatric)

Childhood ALL: Summary

- Most common cancer in children
- >80% event-free survival with 2-3 years of chemotherapy (primarily outpatient)
 - Stem cell transplant only after relapse
 - Overall, 90% are long-term survivors
- Risk-adapted therapy: Intensity of therapy based on risk of relapse
 - Presenting features: age, WBC count
 - Biologic features of leukemia: Chromosomal abnormalities
 - Early Response to therapy: MRD
- Current Treatment Protocols
 - Decrease toxicity, improve QOL
 - Develop new, more effective therapies

Acknowledgements to Dr Lewis Silverman, Director of Hematologic Malignancy Service, Dana-Farber/Boston Children's Cancer and Blood Disorders Center

